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Increased damping of irregular resonators
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It is shown that fractal drums and jagged geometry resonators may be more damped than ordinary Euclidean
systems. Several damping mechanisms are examined and studied by numerical calculations. The results depend
on the dissipation mechanisms but globally they increase with localization, frequency, and the irregularity of
the resonator. The increased dissipation is due to the uneven spatial distribution of the vibrational amplitude in
two different ways. First, it is related to the partial confinement of the vibrational modes. Secondly, increased
dissipation may be due to singularities in the amplitude distribution. This is the case when a few points exist
where the vibration is pinned to zero inducing local logarithmic singularities. This last effect can be spectacu-
lar: a single defect can dominate the surface damping by viscous forces of a square drum.
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I. INTRODUCTION

Objects with irregular geometry are ubiquitous in natu
and their vibrational properties are of general interest. H
do trees respond to wind? How do sea waves depend on
topography or geometrical structure of the coasts and br
waters? How to explain the vibrational properties of glass
All these questions remain largely unanswered. On the o
hand, current knowledge of waves and resonators indic
that even small perturbations of a resonator geometry m
strongly increase the damping of specific modes. A sm
change of the boundary is often used in musical instrum
manufacturing and microwave technology to prevent the
istence of spurious modes which are effectively damped
the choice of a suitable defect in the geometry.

This paper deals with the damping properties of reso
tors with irregular shapes or resonators with point defe
Our general goal is to understand which of the vibratio
properties influence damping, what are the reasons, and
they are related to the resonator geometries. For this purp
we examine several representative geometries and se
damping mechanisms. Between these geometries, speci
tention will be given to fractal drums, as the emergence
fractal geometry has been a significant breakthrough in
description of strong geometrical irregularity@1#. For sim-
plicity we decided to study scalar vibrations instead of vec
vibrations like in electromagnetic cavities. Fractals permit
in many cases to describe approximately strong statis
irregularity. They also permit the study of physical propert
of deterministic but very irregular objects@2#. In this paper,
we deal with damping in fractal and nonfractal types of ge
metrical irregularities. The principal result is that damping
directly influenced by localization and, if present, by stro
singularities of the amplitude distribution.

The three main properties of vibrating systems are th
spectrum, the amplitude distribution of the harmonic exc
tions, and their damping, the damping being related to
first two quantities. The effect of the resonator geometry
the damping has been rarely addressed, although there e
a wide body of empirical knowledge on how to build ‘‘good
1063-651X/2002/65~3!/036614~10!/$20.00 65 0366
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resonators. A good resonator is a resonator that exhibi
large quality factor. The quality factorQn for the nth reso-
nance mode at frequencyvn is the dimensionless ratio of th
reactive energyEn to the loss per cyclePn ,

Qn5
2pEn

Pn
. ~1!

Its value characterizes the ability of the resonator, driv
by an oscillating force of frequencyvn , to accumulate reac
tive energy for a given power inputPn . It also determines
the lifetimeQn /vn of the oscillation when no power sourc
is present. The general question is: do geometrical irregu
ties play a role in the losses and if so, why?

It has been suggested that there may exist an increas
the damping of fractal resonators due to the irregular dis
bution in space of the vibrational amplitude@3#. There exist
two types of fractal resonators. The first are mass fra
resonators@4–6#, for which increased damping has bee
shown numerically for the so-called fracton modes in per
lation clusters@6#. A second type is surface fractals such a
e.g., fractal drums or fractal cavities. To prevent the use
the term ‘‘fractons’’ in this case, their eigenmodes have be
named ‘‘fractinos’’ @7#. The system is generally called
‘‘drum’’ but a real drum is a more complex physical syste
which possesses two membranes and an air column betw
them. Here, we consider a tambourine which is an instrum
with only one membrane. The increased damping of frac
acoustical cavities has been predicted by numerical com
tations and recently been confirmed by experiments@8#.
Mathematical aspects of the study of fractal drums have b
previously reported@9–12#. To our knowledge, no study ha
been made about the comparison of damping between fra
and nonfractal~but irregular! drums. The drum geometrie
are shown in Fig. 1. They range from systems with frac
and nonfractal boundary roughness to square systems
point defects. Fractal drums are created, starting from
square membrane~not shown in the figure!. By applying the
fractal generator shown in Fig. 1~a! to each side of the
square, one obtains the fractal drum of first generation.
©2002 The American Physical Society14-1
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S. RUSS AND B. SAPOVAL PHYSICAL REVIEW E65 036614
applying the fractal generator again to each straight line
the boundary structure, one can create fractal drums of a
trary generations. In this paper, fractal drums up to the th
generation are considered~the last one not being shown!.
Figures 1~b! and 1~c! show fractal drums of first and secon
generation. Figure 1~d! shows a drum with a rough, but non
scaling, boundary. The comparison of this system with
fractal drums permits us to understand the respective rol
mechanical screening in hierarchical and nonhierarchical
ometries. Figure 1~e! shows an example of a square me
brane with point defects. In these last systems, the boun
is smooth, but the wave amplitude can develop strong sin
larities. In all cases we apply Dirichlet boundary condition
which means that the vibrational amplitude is maintained
zero on the perimeter of the drum, as well as on the pin
points, shown in Fig. 1~e!.

Several possible damping mechanisms are introduce
Sec. II. In Sec. III the vibrational amplitude distribution o
the fundamental mode and of the fourth excited mode
described. The damping of uniform membranes is studie
Sec. IV. In Sec. V we investigate the role of the localizati
for the same systems. In Sec. VI we examine the case
nonuniform membrane for which the damping force exi
only at the boundary of the resonator. This can be realized
using an inhomogeneous membrane which presents larg
ternal viscosity only at the drum periphery. Finally, in Se
VI we study the case of a square drum with a few po
defects that pin the amplitude. Contrary to the fractal dru
it is the logarithmic singularity of the amplitude distributio
that creates efficient damping in this case.

FIG. 1. ~a! Generator for the prefractal geometry.~b! and ~c!
Fractal drum of first and second generation. The area is conse
through the iteration process. The fractal dimension of the perim
is D f5 ln 8/ln 453/2. ~d! Rough structure~nonscaling surface ir-
regularity!. ~e! Example of the square system with two pinn
points.
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II. FUNCTIONAL DEPENDENCE OF DAMPING
MECHANISMS

This study is restricted to the limiting situation of wea
losses. In this case the eigenmodes and eigenvalues ca
reasonably approximated by those of the corresponding
loss system. The time-dependent vibrational elongation o
given eigenstate iszn(x,y,t)5AnCn(x,y)cos(vnt) whereAn
is an arbitrary prefactor of the vibrational amplitude. T
eigenstateCn(x,y) is the normalized amplitude of the eigen
mode of frequencyvn which satisfies the Helmholtz eigen
value equation:

DCn52
vn

2

c2
Cn , ~2!

wherec is the sound velocity of the membrane.
Calling r the surface density of the membrane, the valu

of the maximum elastic energy or kinetic energyEn are

En5An
2E dxdy

vn
2r

2
Cn

2~x,y!5
An

2vn
2r

2
. ~3!

We use the normalization condition*dxdyCn(x,y)251.
The loss per cycle is equal to the workFd(x,y)dz over one
period of the damping forceFd(x,y)

Pn5E
period

dtE
drum

Udzn

dt
dFdU. ~4!

Different situations exist, depending on the nature of
damping forces and hence on their spatial distributions. T
damping force on an elementdxdy will be a function of
velocity and shape of the membrane under motion. T
shape dependence of the damping force can be gene
expressed as a function of various space derivatives of
vibrational amplitude:

udFdu5dxdyFK1Udzn

dt U1K2U¹ dzn

dt U ~5!

1K3S dUd2zn

dx2
1

d2zn

dy2U /dtD 1•••]. ~6!

The first term characterizes a damping force proportio
to the local velocity of the membrane. It describes an art
cial situation where a massive membrane is linked to m
individual dashpots with negligible inertia. Additionally
such a term would participate in radiation damping. A cru
~and insufficient! approximation for this is acoustic radiatio
in a fluid, where each surface elementdxdy behaves as a
piston. The problem of acoustic radiation in air is extreme
complex for two reasons. First, if the membrane is light,
motion is strongly coupled to the air and the system does
obey a simple Helmholtz equation@13#. Second, even for a
massive membrane, one should consider not only the
called radiation monopole, but also the various multipo
radiations @14#. This is possibly important for this study
where the amplitudes exhibit singularities on every wedge
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INCREASED DAMPING OF IRREGULAR RESONATORS PHYSICAL REVIEW E65 036614
the boundary. For simplicity we do not consider these co
plex effects, assuming that they can be neglected as c
pared to the other damping mechanisms. Then, the fo
on an element dxdy takes the simple form dF1
52dxdyK1(dzn /dt) and the value of Pn is P1,n

5An
2pK1vn .

The second term is proportional to the gradient of
local membrane velocity. It corresponds, for example,
damping due to the viscosity of an embedding fluid@6#. If
the fluid above and below the membrane is pushed by
membrane’s displacement, its vertical velocity will depe
on x and y. There will exist a gradient in the fluid velocit
and an associated viscous force and dissipation. Here
damping is due to a vertical viscous force of the formdFd
52dxdyK2¹(dzn /dt) 5dxdyAnK2vn sin(vnt)¹Cn(x,y).
The amplitude gradient¹Cn(x,y) is the strain of the mem
brane. The energy loss per cycle in this case isP2,n

5pAn
2K2vn**dxdyuCn¹Cnu. The damping depends on th

spatial distribution of the vibration and strain and thus on
geometry of the drum.

The third term describes damping due to internal visco
if the membrane is viscoelastic. Owing to its finite thickne
the upper part of the membrane is slightly more stretc
than the lower part. In this case the upper layer moves r
tively to the lower layer. As these layers slide, there exist
viscous force which dissipates energy. The relative horiz
tal displacement is proportional to the curvatureud2zn /dx2

1d2zn /dy2u5uDzu. It is also proportional to the membran
and thickness@15#. The energy loss per cycle in this case

P3,n5pAn
2K3vnE E dxdyUCnS d2Cn

dx2
1

d2Cn

dy2 D U . ~7!

There is a fourth interesting situation where the damp
force is nonlinear. We consider here a damping force prop
tional to the square of the velocity gradientdFd
52dxdyKNL„¹(dzn /dt)…2. In that case the dissipate
power can be written PNL,n5pAn

3KNLvn
2**dxdy

3uCnu(¹Cn)2. It will be proportional to the third power o
the amplitude and the quality factor will decrease when
amplitude increases. As shown below, this damping is
rectly related to localization as in the case of linear damp
in fractal acoustical cavities.

The quality factors corresponding to these different ca
can be written as~with dV5dx dy)

Q1,n5
K183vn

E E dVCn
2

, ~8!

Q2,n5
K283vn

E E dVuCn¹Cnu
, ~9!

Q3,n5
K383vn

E E dVuCnuu~d2Cn /dx21d2Cn /dy2!u
, ~10!
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QNL,n5
KNL8 An

21

E E dVuCnu~¹Cn!2

. ~11!

The constantsK18 , K28 , K38 , andKNL8 represent damping
factors which depend on the specific system and its mate
properties. For simplicity, they are assumed to be freque
independent.

III. NUMERICAL CALCULATIONS OF THE EIGENMODES

In the following sections we compare the quality facto
for the different geometries of Fig. 1 and for the differe
damping mechanisms from Eqs.~8!–~11!. To the latter we
refer to as ‘‘case 1’’ until ‘‘case 4’’—damping. For the ca
culations, it is necessary to know the frequency spectrumvn
and the spatial distribution of the modes amplitudesCn .
These computations have been performed using the e
correspondence between the Helmholtz and diffusion eq
tions described in@7#.

Wave form singularities are expected to appear at the
regular resonator boundary. The singularities create a lo
augmentation of the spatial derivatives and consequent
corresponding local increase of the energy losses along
boundary@4,13#. Modes may be singular near the wedges
the boundary, i.e., their derivatives are infinite at particu
points on the surface geometry. Consider, for example, a
gion of the membrane around a ‘‘salient’’ corner, i.e., a c
ner with an opening angle of 3p/2 @3#. Close to the bound-
ary, the amplitude of the vibration is very small andDC is
close to 0. In this case, using polar coordinates (r ,w) around
the corner, the solution of the Laplacian with Dirichl
boundary conditions is approximately of the form

C;S r

r 0
D 2/3

sin~2w/3!, ~12!

wherer 0 is of the order of the local small scale of the irreg
lar geometry. For a fractal drumr 0 is of the order of the
small cut-off scale of the fractal. The gradient]C/]r
;r 21/3 tends to infinity whenr tends to 0@3#. This corre-
sponds to a local infinite stress and strain of the membra
Such a property should be true around every salient poin
the structure.

Note that real physical objects only present round
wedges. Around these wedges, the derivative does not
to infinity but to a large finite value proportional to the in
verse of the curvature radius of the contour.

Due to the existence of singularities, precise eigenfu
tions are required. The method described in@7# was chosen
because it allows for the large spatial resolution required
the study of fractal resonators. The computation is made o
discretized square grid with lattice distancea. The 200–300
lower modes have been computed and are studied here.
states are given by their numerical values at sitesi , j of the
square grid, normalized by the relation

a2(
i , j

Cn
2~ i , j !51. ~13!
4-3
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S. RUSS AND B. SAPOVAL PHYSICAL REVIEW E65 036614
As indicated by Eqs.~8!–~11!, the Q values depend di-
rectly on the spatial distribution of the eigenfunctions a
their gradients. The vibration distribution is shown for sta
n51 andn54 in Figs. 2 and 3. One can observe that t
modes are singular near the wedges of the boundary,
their derivatives are infinite at particular points on the s
face. The fundamental state is localized in the large cen
region of the drum. It decays very rapidly when enteri
narrow regions@7#. Second, the absolute value of the gra
ent is smaller in narrower regions. This is caused by
decrease of the amplitude itself. The decrease of the grad
corresponds to a screening effect analogous to Lapla
screening. For Laplacian screening, the region with large
placian fields~here¹Cn) has a dimension equal to 1, inde

FIG. 2. Fundamental moden51. Top: Distribution of the am-
plitude. Bottom: Distribution of the absolute value of the strain
amplitude gradient. One observes strain peaks at the salient e
but the edges situated in the bays are partially screened and
smaller strains. Courtesy of J. F. Colonna.
03661
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pendently of the geometry@16–18#. This means that large
strains are distributed over a region of total size on the or
of the system size, independently of structure.

For staten54 the same properties are found. Howev
due to the higher frequency and shorter wavelength,
mode penetrates into narrower regions, allowing for a be
exploration of the geometry. If the damping really depen
on wedge singularities, it should increase at high frequen

IV. UNIFORMLY DISTRIBUTED DAMPING: RESULTS
AND DISCUSSION

The quality factors are computed using the discretiz
expressions of the integrals~A1!–~A3! given in the Appen-

r
es,

see

FIG. 3. Moden54. Top: amplitude distribution. Bottom: distri
bution of the absolute value of the strain or amplitude gradient.
higher frequency, because of the smaller wavelength, the mo
penetrate more deeply into the narrower regions close to the bo
ary and the strain peaks are more uniformly distributed. Courtes
J. F. Colonna.
4-4
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INCREASED DAMPING OF IRREGULAR RESONATORS PHYSICAL REVIEW E65 036614
dix. Herein, the numerical results correspond to the sa
discretization grid and can thus be compared. Conside
square lattice of sideL, with fundamental mode frequenc
v05A2pc/L. The area of the membrane is conserved
applying the fractal generator, which allows us to comp
fractal drums of different geometries but with the same s
face L2. In the following, all frequencies are given by th
size-independent normalized frequenciesvn /v0. This en-
ables us to discuss the results on a single frequency-s
The different types of viscous damping behave in the follo
ing way.

Q1,n is equal tovnrK18 , independently of the spatial dis
tribution of the vibration. In this case the quality factors d
pend on the frequency but are independent of the sh
Therefore,Q1,n is the same for vibrations in Euclidean an
fractal systems~apart from the fact that the spectrumvn is
different!. Note that the same result would be obtained
the quality factor of an irregular superconducting microwa
cavity in the case where damping is only due to dielec
losses in the volume of the cavity.

The valuesQ3,n are obtained from Eqs.~2!, ~10!, and~13!.
One obtains Q3,n5K383c2(vn**dxdyCn

2)215K38c
2/vn ,

also irrespective to the drum shape. The fact thatQ1,n and
Q3,n are independent of the shape has been verified num
cally.

The cases of interest are therefore case 2~where the en-
ergy losses are due to the viscosity of the embedding fl!
and case 4~nonlinear damping!. Case 2 is computed usin
expressions~9! and~A1! ~see the Appendix!. The results are
shown in Fig. 4. One can see that theQ2 factors are modified
by the irregularity of the drum but the effect remains sma
This is due to the fact that the local losses are proportiona
the product of the amplitude gradient with the amplitu

FIG. 4. Q2 in arbitrary units for homogenous linear damping
type 2 in different geometries plotted versus the normalized
quenciesv/v0. The symbols represent, respectively, squares for
square initiator, empty triangles (n) for the fractal drum of first
generation, empty triangles (,) for the generation 2, filled triangle
(m) for generation 3, and circles for the rough structure. Th
exists an effect of the geometry but this effect is weak and does
change the order of magnitude of theQ factor.
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itself. Around a wedge, the losses behave
C(r ,w)¹C(r ,w);r 2/3r 21/35r 1/3, which means that al-
though the strain is singular, the losses are not. Therefore
existence of wedges in the structure does not influence
quality factors Q2 significantly. In order to increase th
damping it would be useful to prevent screening by keep
singular wedges exposed to a large strain. It is for that p
pose that the rough drum has been studied~open circles in
Fig. 4!. Indeed, one observes that a nonscaling~or ‘‘regular
irregular’’! structure is more efficient in decreasing theQ2
factor than the self-similar geometry. The effect, howev
remains small.

Therefore, it is necessary to check the numerical error
our calculations. This can be done by comparing the num
cal with the theoreticalQ factor which can be compute
analytically for a particular case. The fractal drum of gene
tion n is constituted by a collection of joint identical squar
of size L/4n. Therefore, there exists a number of trivi
eigenfunctions of the form C(x,y)5sin(22nmpx/L)
3sin(22nm8py/L) with m,m851,2,3, . . . . For the state
(m,m8)5(1,1) of the first-generation fractal drum, we fin
the numerical and analytical quality factors to beQ(num.)
517.755 86 andQ(anal.)517.756 97. This corresponds to
numerical error of only 0.006%, far smaller than the effe
discussed here, of the order of tens %. Note that, becaus
the finite discretization of the mesh, the wedge strain is
nite. In first approximation, it corresponds to the real boun
ary gradient if the wedges were rounded to the scale of
mesh, hereL/128, as explained in the preceding discussio

The nonlinear viscous damping~case 4! is computed us-
ing expressions~11! and~A3! ~see Appendix! and the results
are shown in Fig. 5. The factorQNL is now strongly modified
by the contour irregularity~note the logarithmic scale fo
QNL). Specifically, higher-order drums possess many mo
with very smallQNL values. One also observes that mod
with close frequencies may have very different quality fa
tors spreading over nearly one order of magnitude. The
ferences between the second- and third-order drum are
significant in the frequency range under study.

The fact thatQ2 andQNL show very different frequency
dependencies as well as the dispersion ofQNL values can be
understood by considering the spatial dependence of the
plitude and the effect of mode localization. This is discuss
in the next section.

V. ROLE OF THE LOCALIZATION AND FREQUENCY
DEPENDENCE OF THE QUALITY FACTOR

Localization has already been found both numerically a
experimentally in fractal acoustical cavities and in frac
drums@8,18#. The localization of a moden is usually char-
acterized by the value of its localization volume defined

Vn5
1

E Cn
4~x,y!dxdy

, ~14!

whereCn is normalized in the resonator volume accordi

-
e

e
ot
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to Eq. ~13!. The relative localization volumeVn /L2 ~or par-
ticipation ratio! measures the relative ‘‘volume’’ occupied b
this mode.

Figure 6 shows the different localization volumesVn /L2

computed from the amplitude distributions. The states

FIG. 5. QNL in arbitrary units for homogenous nonlinear dam
ing in different geometries plotted versus the normalized frequ
cies v/v0. The symbols represent, respectively, squares for
square initiator, empty triangles (n) for the fractal drum of first
generation, empty triangles (,) for the generation 2, filled triangle
(m) for generation 3, and circles for the rough structure.~The same
symbols as in Fig. 4.! There exists a strong effect of the frequen
and of the geometry. One observes that in the same frequency r
the fractal drums exhibit a large dispersion of theQ factors. This is
due to very different localization effects, as shown in Sec. IV.

FIG. 6. Dispersion of the relative localization volumeVn /L2 for
the resonators shown in Fig. 1. The states are indexed by
normalized frequenciesv/v0 for all systems. The constant valu
Vn /L254/9 for the square drum is indicated by the dashed line. T
symbols correspond respectively: empty triangles (n) to the fractal
drum of first generation, empty triangles (,) to the generation 2,
filled triangles (m) to generation 3, and circles to the rough stru
ture.
03661
re

indexed by their normalized frequenciesv/v0 and the dif-
ferent symbols refer to different geometries. The cloud
points in this figure are indicative of the wide dispersion
the participation ratios, first, between different systems a
second, also for a given system. Only for the square dr
where the eigenstates are delocalized sine functions,Vn /L2

54/9'0.44 for all states. The relative localization volum
of the second~triangles down! and the third-order drum
~filled triangles! are distributed between 0.05 and 0.35. The
values reflect a very different behavior of the correspond
modes. The upper values are not very distinct from the va
of a regular square drum and accordingly, the respec
wave functions are more or less distributed over the wh
system. The modes that are significantly more confined t
Vn /L2'0.3, are called ‘‘localized.’’ Most interesting are th
modes with values of less than 0.1. We can see in the fig
that there are several of them that occur in branches aro
special frequencies. Examples are the modes aroundv/v0
510 and 14 for the second-order drum. It is exactly tho
modes which show the smallestQNL factors in Fig. 5. A
different behavior is found for the rough drum~circles!. Its
localization volumes~above 0.3) indicate that its vibration
are not localized, as expected as this resonator possess
screened regions. The following discussion permits us to
late in a formal manner the observed dispersion in Fig. 5
the observed dispersion in Fig. 6 linking directly dampi
and localization.

Using Vn one can obtain a rough estimate of the qual
factors by distinguishing between regions of large and sm
amplitude. We consider the regions of large amplitude a
define an average absolute amplitude bŷuCnu&
[Vn

21*dxdyuCnu. For a localized mode, assuming that t
amplitude is approximately zero outside its localization v
ume, one can write the normalization condition as^uCnu&2

3Vn;1 or

^uCnu&;~Vn!21/2. ~15!

We now consider the different types of damping separat
according to cases 2 and 4. At frequencyvn the characteris-
tic distance for the amplitude space variation is a ha
wavelengthln/25pc/vn . The order of magnitude of the
gradient¹C is 2^uCnu&/ln5Vn

21/2vn /pc, which leads to a
Q2,n factor of

Q2,n;vnYE dVuC¹Cu;~Vn!03~vn!0. ~16!

This semiquantitative prediction means thatQ2,n is essen-
tially independent of frequency and localization, which
compatible with the data in Fig. 2 where we found that t
effects of geometry are relatively small.

The situation is very different for the nonlinear dampin
where we find by the same estimations thatQNL,n is of the
form

QNL,n;1YE dVCn~¹C!2;~Vn!1/23~vn!22. ~17!
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INCREASED DAMPING OF IRREGULAR RESONATORS PHYSICAL REVIEW E65 036614
The localization argument indicates thatQNL should be
markedly smaller for localized states and high frequenc
This is verified in Fig. 7 where the relation~11! is compared
to the numerical results. The values ofQNLv2 are plotted
versus (Vn /L2)1/2. The fact that for all drums and all state
the points fall onto the same universal curve illustrates t
damping is directly influenced by localization and that t
simple semiquantitative reasoning described above applie
irregular drums, independent of their shape. Note the lin
scale in the figure.

For all these cases, the divergences of the strain at sa
points do not contribute significantly to the dissipation. Ev
for the nonlinear case, the local strain diverges as]C/]r
;r 21/3 and the integrand is of the formr 1 which is regular.
Again, damping due to uniformly distributed mechanisms
not dominated by strain divergences.

VI. BOUNDARY DAMPING

In the last two sections we study cases where the diss
tion mechanism is not distributed uniformly over the me
brane. In the first case of practical interest, only the periph
of the drum presents internal viscosity~case 3!. The mem-
brane is purely elastic in the drum interior and viscoelas
along the boundary of the resonator. This situation is of pr
tical interest when one wishes to dampen spurious high
quency resonances of membranes. It is linear damping
scribed by Eq.~A2! but the integration has to be performe
only over a small layer along the boundary. We call the qu
ity factor Q3

b .
The power P3,n dissipated along the boundary can

written from Eq.~7! as

P3,n5pAn
2K3vn (

boundary
uCn~a!uuDCn~a!u, ~18!

FIG. 7. QNLv2 in arbitrary units versus (Vn /L2)1/2 for all sys-
tems, including the square generator. Same symbols as in Fi
Note that the vertical scale is linear whereas the scale on Fig.
logarithmic.
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whereCn(a) and DCn(a) are the respective values of th
amplitude and of the Laplacian on mesh sites next to
boundary, i.e., at a distancea of one lattice constant. The
data corresponding to the fractal drum of third generation
not given due to the lack of resolution of the smaller cutoff
the grid used for the computation~only three vibrating sites!.
The other results are shown in Fig. 8, whereQ3

b is plotted
versus (v/v0)3. One observes~i! a strong decrease with fre
quency following a power law with exponent -3,~ii ! a
gradual decrease of the quality factors as one moves f
regular to more and more irregular drums, and~iii ! a strong
effect of the localization. So, the quality factors for th
square and the rough drums, which show no localization,
clearly above those of the fractal drums, which have ma
localized states. Additionally, for the second generati
those states with frequencies aroundv/v0'10 andv/v0
'14, showing strong localization, have the smallest qua
factors~indicated by arrows in Fig. 8!.

The general behavior of the results may be understoo
follows: with uDCnu;vn

2uCnu, one expects that

Q3
b;1YS vn (

boundary
Cn

2~a! D , ~19!

where the sum runs over all boundary sites. The value of
sum in Eq.~19! depends on the amplitude distribution an
the localization close to the boundary.~Note that the square
and the rough generator show no localization.! If the ampli-
tudes behave approximately as sine waves, the ampli
value next to the boundary is proportional to (a/l) and thus
to vn . It is also proportional to the amplitude facto
^uCnu&;(Vn)21/2 of Eq. ~15! which depends on localization
This means that Q3

b;(vn^(n,b8 uCnu&2)21;(Vn)
3(vn

3(n,b1)21, where the prime denotes the ‘‘active boun
ary’’ and the sum(n,b8 runs over all boundary sites in th
localization regions of moden.

4.
is

FIG. 8. The quality factorQ3
b in arbitrary units versus (vn /v0)3

for the boundary linear damping of type 3 with the same symbols
in Fig. 4. The line of slope21 is a guide to the eye. For th
second-order drum, the states with frequencies aroundv/v0'10
andv/v0'14, showing strong localization and very small quali
factors, are indicated by arrows.
4-7
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S. RUSS AND B. SAPOVAL PHYSICAL REVIEW E65 036614
This argument, which is valid for all the structures, e
plains the frequency power law. The interpretation of t
dependence ofQ3

b on the localization, on the other hand,
difficult, becauseQ3

b depends both on the localization vo
ume and on the set of perimeter sites which are ‘‘active’’
the localization volume. Also, the local irregularity aroun
wedges could play a role as its relative contribution to dam
ing effects could be larger than in the case of homogene
damping. To disentangle these various factors would req
the computation of the eigenmodes of fractal drums of hig
generations with sufficient resolution. This is currently n
possible.

In any case, if one wishes to increase the damping by
singular behavior of the strain, one should search for a st
ger divergence around salient points. This is found aro
needles whereC behaves asr 1/2 and¹C therefore asr 21/2.
Even in that extreme case the integrands for the various
tegrals mentioned above are regular and the singularitie
the geometry play only a small role. In contrast, the ex
tence of pinned points inside a regular drum will create lo
rithmic singularities which might dominate the dampin
This is shown in the next section.

VII. DAMPING AROUND PINNED POINTS

We discuss here the damping of a regular square drum
which a certain number of inner points are pinned. One
ample is shown in Fig. 1~e!. The vibrational amplitude van
ishes at these points and the membrane is viscoelastic a
the boundary as well as around the pinned points. We c
sider three different cases, whose fundamental modes
shown in Figs. 9~a!–9~c!. It can be seen that around pinne
points, there are large gradients of the vibrational amplitud
The choice of the positions for the pinned points was guid
by the effort to avoid the natural nodelines caused by
symmetry of the square.

In case~a!, only one point is kept fixed at a position clos
to (x,y)5(L/R,L2L/R), whereR is the golden mean. The
use of the golden mean is in order to place the pinned p
at the most ‘‘antiharmonic’’ location with regard to the hor
zontal and the vertical symmetry axes of the membrane.R is
most distant from a rational number and so no nodeline
the sine functions sin(npx/L) can occur close tox5RL or
x5(12R)L. However, this point lies close to a diagon

FIG. 9. Fundamental modes of square systems with~a! one,~b!
two, and ~c! 20 pinned points. The amplitudes are indicated
different gray levels. The white regions stand for very large am
tudes. The darker tone stands for nearly zero amplitude.~Node lines
do not exist in the fundamental mode.!
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which is also a symmetry axis. Eigenstates must be ei
symmetric or antisymmetric under reflexion on the diagon
The antisymmetric modes of the square have a zero valu
the diagonal. These modes are unperturbed by the exist
of a pinned point on this diagonal. In order to suppress a
symmetry in case~b! two pinned points were introduced a
the positions (x,y)5(L/R,L2L/R) and (x,y)5„L/4
1L/(2R),L2L/(2R)…. In case ~c! 20 randomly chosen
points are pinned.

Now the stronger singularities in the amplitudes
modify the damping. Very close to a fixed point, the soluti
of the Laplace equation shows logarithmic singularitie
c(r ); log r, and one expects large contributions to damp
at small r. In that case the sum in Eq.~19! contains large
(loga)2 terms at the denominator. The numerical results
shown in Fig. 10. The figure contains the data for the norm
square without pinned points and for the systems of F
9~a!–9~c!. In the inset, the behavior of the vibrationonal am
plitudes c(r ) are shown along the horizontal distancesr
from the pinned point of system 9~a! and from the boundary
The singularity around the pinned point is observed. Close
the regular boundary, on the other hand, the amplitude
haves linearly as sinr;r. The value ofc(r ) at a distance of
one lattice constant from a pinned point is about 20–30 tim
larger than at the same distance from the boundary. Co
quently, in a square lattice of side lengthL5256a, one
single pinned point is about five times more efficient for t
damping than all the approximately 1000 boundary poi
altogether.~This estimation contains the difference inc2 and
the number of neighbors around the pinned point and wo

-

FIG. 10. Q3
b,p in arbitrary units for square membranes with d

ferent numbers of pinned points, plotted versus the normalized
quenciesv/v0. The different symbols represent the normal squ
without pinned points~open squares! and the systems of Fig. 10:~a!
full squares,~b! diamonds, and~c! open circles. Inset: The wave
function c(r ) is plotted against the horizontal distancer from a
pinned point~filled circles! and from the boundary~open circles!
for the system of Fig. 9~a!. It can be recognized thatc(r ); log r for
rÞ0 around the pinned point andc(r );sinr'r at small distances
from the boundary.
4-8
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INCREASED DAMPING OF IRREGULAR RESONATORS PHYSICAL REVIEW E65 036614
be even larger if we considered viscoelasticity up to seco
nearest neighbors.!

As one observes in Fig. 10, the quality factors decre
drastically due to the existence of pinned points. As
pected, for one pinned point on the diagonal@Fig. 9~a!# the
quality factor for the fundamental is decreased by a facto
about 5. It is a most remarkable result that a single po
defect can dramatically increase the damping. It has to be
in relation with a common technique in radar technolo
where a small wire is introduced into a microwave cavity
a maximum of the electric field of an eigenmode in order
‘‘kill’’ that mode. Note that damping in microwave cavities i
also a surface damping due to the classical skin effect.

However, the modes that are antisymmetric with resp
to the diagonal are unperturbed and show the same qu
factors as the square. The symmetry effect is suppresse
the systems with several pinned points. In case~b! or ~c!
there are always several pinned points close to amplitu
maxima—at least at low frequencies@cf. Fig. 10~c!#. There-
fore, in the entire low-frequency regime, the quality facto
Q3

b,p are strongly diminished as compared to the bound
damping in the normal square. With increasing frequen
the relative effect becomes smaller, because modes bec
more and more confined between defects. At the same
the frequency spectrum shifts to higher values. Contrary
the results of the fractal drums, the states of these m
branes are not strongly localized. The participation ratios
these modes are found to beVn /L2>0.3, much larger than
for the fractal drums. Therefore the observed damping is
this case, a direct consequence of the singular behavior o
vibration amplitudes. Not shown here, we have computed
damping of the fundamental state for one single pinned p
with coordinates (x,L/2) as a function ofx. A first order
perturbation theory correction would predict that the los
go with sin2(px/L) attached to the unperturbed state. This
approximately found.

VIII. CONCLUSION

In summary it has been shown that irregular shapes
only drastically alter the spatial character of drum vibratio
but may also increase their damping. This has been inve
gated for several geometries~with scaling and nonscaling
surface roughness and with pinned point defects! and for
different damping mechanisms. The general conclusion
that irregularity increases the effective damping of the vib
tion. It has been found that there are two different reasons
these effects: localization and the existence of algebraic
gularities of the spatial distribution of the modes amplitud

For drums without point defects the damping is rela
directly to localization as a localized vibration presents lar
amplitude and velocity gradients and therefore increased
sipative viscous forces. On the other hand, the existence
few pinned points on an otherwise regular drum can incre
the damping dramatically. This is due to the existence
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logarithmic singularities in the viscoelastic behavior arou
pinned points. For example, it has been found that onl
pinned points suitably placed are significantly more efficie
in damping than some 1000 points along the smooth bou
ary. This last damping phenomena is not related to local
tion, but to the strong singularity of the vibrational amp
tude. This is the first quantitative explanation of why po
defects, such as those used in radar technology, really pe
the ‘‘kill’’ of unwanted spurious modes.
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APPENDIX

With the notations of the discretized lattice the integrals
Eq. ~9! are substituted by the expression

E E dxdyuCn¹Cnu

5~a2/2!(
i , j

uCn~ i , j !u@ uCn~ i 11,j !2Cn~ i , j !u

1uCn~ i 21,j !2Cn~ i , j !u1uCn~ i , j 11!

2Cn~ i , j !u1uCn~ i , j 21!2Cn~ i , j !u#. ~A1!

In the same way the integrals in Eqs.~10! and ~11! are ex-
pressed on the discretization grid as

E E dxdyCnu~d2Cn /dx2!1~d2Cn /dy2!u

5a2(
i , j

uCn~ i , j !u@ uCn~ i 11,j !1Cn~ i 21,j !22Cn~ i , j !

1Cn~ i , j 11!1Cn~ i , j 21!22Cn~ i , j !u#, ~A2!

E E dxdyuCnu~¹Cn!25~a2/2!(
i , j

uCn~ i , j !u@ uCn~ i 11,j !

2Cn~ i , j !u21uCn~ i 21,j !

2Cn~ i , j !u21uCn~ i , j 11!

2Cn~ i , j !u21uCn~ i , j 21!

2Cn~ i , j !u#2. ~A3!
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2014 ~1997!; B. Hébert, B. Sapoval, and S. Russ,ibid. 105,
1567 ~1999!.
03661
@9# M. L. Lapidus and M. Pang, Commun. Math. Phys.172, 359
~1995!.

@10# M. Lapidus, J. W. Neuberger, R. Renka, and C. A. Griffith, In
J. Bifurcation Chaos Appl. Sci. Eng.6, 1185~1996!.

@11# M. Levitin and D. Vassiliev, Proc. London Math. Soc.72, 178
~1996!.

@12# J. Fleckinger, M. Levitin, and D. Vassiliev, Proc. Londo
Math. Soc.71, 372 ~1995!.

@13# G. A. Kriegmann and C. S. Scandrett, J. Acoust. Soc. Am.86,
788 ~1989!.

@14# P. M. Morse and K. Uno Ingard,Theoretical Acoustics~Prin-
ceton University Press, Princeton, N.J., 1968!.

@15# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals
~Clarendon Press, Oxford, 1995!, p. 418.

@16# N. G. Makarov, Proc. London Math. Soc.51, 369 ~1985!.
@17# P. Jones and T. Wolff, Acta Math.161, 131 ~1988!.
@18# B. Sapoval, M. Filoche, K. Karamanos, and R. Brizzi, Eu

Phys. J. B9, 739 ~1999!.
@19# C. Even, S. Russ, V. Re´pain, P. Pieranski, and B. Sapova

Phys. Rev. Lett.83, 726 ~1999!.
4-10


